A tractable multi-factor dynamic term-structure model for risk management

Roland C. Seydel
joint work with Michael Henseler and Christoph Peters

German Finance Agency, Frankfurt

2013-06-12
Overview

1. The dynamic term-structure model

2. Fitted curves

3. Principal components
 - Definition of principal components
 - Pseudo principal components

4. Pricing
Overview

1. The dynamic term-structure model

2. Fitted curves

3. Principal components
 - Definition of principal components
 - Pseudo principal components

4. Pricing
Two motivations for two purposes

1. **Statistical analysis:** Yield curve movements can be “explained” by only a few factors / principal components. Linear structure necessary for stable PCs ⇒ model yield curve by “deterministic” + “few factors”, e.g. inst. forward rates

\[f(t, t + \tau) := A(\tau) + M^\top(\tau)u(t), \]

- \(A(\tau) \) deterministic function of time to maturity \(\tau > 0 \)
- \(u(t) \in \mathbb{R}^n \) factor weights at time \(t \)
- \(M(\tau) \in \mathbb{R}^n \) basis functions

2. **Pricing derivatives:** Need no-arbitrage ⇒ choose \(M \) as exponential: Assume \(A = 0 \) and deterministic market. Then

\[f(t, t + \tau + \Delta) = M^\top(\tau + \Delta)u(t) \overset{!}{=} M^\top(\tau)u(t + \Delta) = f(t + \Delta, t + \Delta + \tau) \]

One solution is \(M_i(\tau) = \exp(-\alpha_i \tau) \), then \(M_i(\tau + \Delta) = M_i(\Delta)M_i(\tau) \).
The model at a glance

- Instantaneous forward rates, seen from time t for the maturity $t + \tau$ modeled as

$$f(t, t + \tau) := A(\tau) + u_1(t)e^{-\alpha_1\tau} + \ldots + u_n(t)e^{-\alpha_n\tau}$$ \hspace{1cm} (1)

- Fixed deterministic exponents $\alpha_n > \ldots > \alpha_1 > 0$

- Deterministic affine term $A(\tau)$

- Stochastic weights $u(t) = (u_1(t), \ldots, u_n(t))^\top$ follow the mean-reverting process

$$du(t) = (\text{diag}(-\alpha)u(t) + R)dt + \sigma dW_t,$$ \hspace{1cm} (2)

where $\sigma \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^n$, and W an n-dimensional Brownian motion under the real-world measure.
Why...?

- Why this model? Very straightforward linear specification (easiest arbitrage-free affine model)
- Why linear combination of exponentials? Under any (affine-)linear specification of rates and SDE, the function basis M has to be an exponential one because of no-arbitrage conditions
- Why dynamics under the physical measure? Because we see it from a risk management perspective – if you don’t then ignore the risk premium term R
- Why $\text{diag}(-\alpha)$ in dynamics of weights u? To ease presentation – actually $\text{diag}(-\alpha)$ could be replaced by any matrix S, implying an affine-linear risk premium
The dynamic term-structure model

Properties of the model

- Free of arbitrage if for some b_0, the affine term is
 \[A(\tau) = A(0) - \tilde{M}^\top(\tau)(\sigma b_0 - R) - \frac{1}{2} \tilde{M}^\top(\tau)\sigma\sigma^\top \tilde{M}(\tau) \]
 for \[\tilde{M}_i(\tau) = \int_0^\tau M_i(\tau)\,ds \]
- Affine model in Heath-Jarrow-Morton framework in the sense of [Duffie and Kan(1996)]
- HJM representation of the class of Gaussian short-rate models:
 - Short-rate models: Special case for $n = 1$ Vasicek, case $n = 2$ is known as Hull-White 2-factor or G2++ [Brigo and Mercurio(2006)]
 - HJM representation for arbitrary n theoretically derived in [El Karoui and Lacoste(1995)]
- Gaussian model \Rightarrow easy to simulate, closed-form solutions, well-behaved
- Negative rates possible! (Disadvantage?)
A normal model: Distributional properties

The SDE (2) has an explicit known solution (multi-dimensional Ornstein-Uhlenbeck).

Starting in $t = t_0$, the weights $u(T)$ at time $T > t_0$ are normally distributed with (for $S = \text{diag}(-\alpha)$)

$$u(T) \sim \mathcal{N}(\exp(S(T - t_0))u(t_0) + S^{-1}(\exp(S(T - t_0)) - 1)R, \Sigma_{t_0, T})$$

where the covariance matrix is given by

$$(\Sigma_{t_0, T})_{jk} = -\frac{\exp(- (\alpha_j + \alpha_k)(T - t_0)) - 1}{\alpha_j + \alpha_k}(\sigma\sigma^\top)_{jk}.$$

Therefore, all (inst.) forward and zero rates are normal too (as linear combinations of normal distribution)!
Overview

1. The dynamic term-structure model

2. Fitted curves

3. Principal components
 - Definition of principal components
 - Pseudo principal components

4. Pricing
Some calibrated curves: Pre financial crisis

All curves displayed were fitted to quotes of German government bonds using a historical calibration. \(n = 5 \) stochastic factors were chosen with an exponent \(\alpha = \frac{1}{12} (1, 2, 3, 4, 5) \top \).

Figure: Fitted zero curve on 10/31/2005 (left), and quoted and implied yields for this date (right). Smooth market data result in a very good fit.
Some calibrated curves: Financial crisis

Figure: Fitted zero curve on 10/31/2008 (left), and quoted and implied yields for this date (right). $n = 5$ parameters are not sufficient for a perfect fit, but implied yields are still reasonably close to quoted yields.
Calibrated curves: Error over time

Figure: Root mean squared error between quoted and implied yields from 2002 to 2012, for the model presented with $n = 5$ stochastic parameters (blue solid line), with $n = 2$ (green dashed line), and for the benchmark NSS parameterization (red dashed line).
Overview

1. The dynamic term-structure model

2. Fitted curves

3. Principal components
 - Definition of principal components
 - Pseudo principal components

4. Pricing
Recalling principal components

- We are given a statistical covariance estimate \(\hat{\Sigma} \)
- The eigendecomposition \(\hat{\Sigma} = \Gamma \Lambda \Gamma^\top \) with \(\Gamma^\top \Gamma = I \), for \(\Lambda = \text{diag}(\lambda_i) \) with \(\lambda_1 \geq \ldots \geq \lambda_d \) yields the principal components: If a random vector \(X \) has covariance matrix \(\hat{\Sigma} \), then
 \[
 \text{Cov}(\Gamma^\top X) = \Gamma^\top \hat{\Sigma} \Gamma = \Lambda,
 \]
 i.e., the random variables \((\Gamma^\top X)_i\) are uncorrelated with each other
- The columns of \(\Gamma \) as normed eigenvectors are called **principal components**
- If the vector \(X \) is composed of rates with different tenors, then the principal components can be nicely plotted in time
- Typically the largest three eigenvalues account for \(> 95\% \) of yield curve movements as measured by the proportion of “variability”
 \[
 \sum_{i=1}^{3} \lambda_i / \sum_{i=1}^{d} \lambda_i
 \]
Principal components: problems for our model

But:

- Depends on chosen discretization! Although typically tenors are regularly spaced, this arbitrary choice appears nowhere in an explicit fashion!
- Discretizing not necessary for a parametric model where rates are continuously defined
- Discretizing a yield curve on the interval \([0, \infty)\): have to cut somewhere

General solution

Consider a weighted function space \(L^2(\rho)\) on \([0, \infty)\).
Let \(\rho : [0, \infty) \to \mathbb{R}^+_0 \) be a weighting function defining the weighted Hilbert space \(L^2(\rho) \) together with \(\langle f, g \rangle_{L^2(\rho)} := \int_0^{\infty} f(s)g(s)\rho(s)\,ds \).

Idea

Instead of operating on the rates, transform the “monomials” \(M \) directly. We represent the result of the transformation by \(P(\tau) = \Gamma^\top M(\tau) \) for \(\Gamma \in \mathbb{R}^{n \times n} \).

The weights wrt \(P(\tau) \) denoted by \(w(t) := \Gamma^{-1}u(t) \) should be uncorrelated, i.e., have a diagonal covariance matrix:

\[
\Lambda^M := \Gamma^{-1}\Sigma\Gamma^{-\top}
\]

where \(\Sigma = \sigma\sigma^\top \).

(16)
PCs in the yield curve space $L^2(\rho)$ (II)

We require orthonormality in $L^2(\rho)$, i.e. $\langle P_i, P_j \rangle_{L^2(\rho)} = \delta_{ij}$ for $i, j = 1, \ldots, n$ or

$$\Gamma^\top \langle M, M^\top \rangle_{L^2(\rho)} \Gamma = I_n, \quad (6)$$

where $\langle M, M^\top \rangle_{L^2(\rho)} := (\langle M_i, M_j \rangle_{L^2(\rho)})_{i,j} \in \mathbb{R}^{n \times n}$. In this case, for a diagonal matrix $\Lambda^M = \text{diag}(\lambda_i) = \Gamma^{-1} \Sigma \Gamma^{-\top}$,

$$\text{Cov}(df(t, t + \tau_1), df(t, t + \tau_2)) = \text{Cov}(M^\top(\tau_1) du(t), M^\top(\tau_2) du(t))$$

$$= dt \cdot M^\top(\tau_1) \Sigma M(\tau_2)$$

$$= dt \cdot M^\top(\tau_1) \Gamma \Gamma^{-1} \Sigma \Gamma^{-\top} \Gamma^\top M(\tau_2)$$

$$= dt \cdot M^\top(\tau_1) \Gamma \Lambda^M \Gamma^\top M(\tau_2)$$

$$= dt \cdot \sum_{i=1}^{n} \lambda_i (\Gamma^\top M(\tau_1))_i (\Gamma^\top M(\tau_2))_i \quad (7)$$

The instantaneous forward rate covariance is preserved and can be represented by the principal component polynomials $P_i(\tau) = (\Gamma^\top M(\tau))_i$.
PCs in the yield curve space $L^2(\rho)$: Back to \mathbb{R}^n

1. Let $D \in \mathbb{R}^{n \times n}$ be a matrix with $DD^\top = \langle M, M^\top \rangle_{L^2(\rho)}$, e.g., from a Cholesky decomposition.

2. Find a $\hat{\Gamma} = D^\top \Gamma$ with $\hat{\Gamma}^\top \hat{\Gamma} = I_n$, such that
 \[
 \hat{\Gamma}^\top D^\top \Sigma D \hat{\Gamma} \quad (= \hat{\Gamma}^{-1} D^\top \Sigma D \hat{\Gamma}^{-\top} = \Lambda^M)
 \]
 be diagonal (eigenvalue decomposition).

3. The diagonal of (8) contains the sought eigenvalues, and the principal component polynomials result by transforming the monomials using $\Gamma = D^{-\top} \hat{\Gamma}$.
Example of principal components

Figure: Example of the first three principal components of zero rates, representing the typical yield curve movements shift, steepening and curvature.
Pseudo principal components: motivation

Pseudo principal components are polynomials (linear combinations of monomials M_i) with could be principal components, but are actually invented.

Why pseudo?
- The model specification (1) is transparent, but at the same time exhibits unintuitive weights u, e.g. $u = (-1, 1.5, -2, 2.5, -3)^\top$
- Need to compute sensitivities wrt observables of the yield curve (e.g., modified duration as relative sensitivity to a parallel shift)

Approach 1: Linearly transform such that the yield curve can be specified in terms of zero rates at n different nodes. Disadvantage: Changing one zero rate affects all other zero rates too (except at the nodes)

Solution: Use pseudo principal components!
Pseudo principal components: construction

The following construction principle can be used:

1. Construct the first (forward rate) pseudo PC $P_1 \in L^2(\rho)$ as the linear combination of M_1, \ldots, M_n closest (in the norm of $L^2(\rho)$) to a constant function, normalize afterwards such that $\langle P_1, P_1 \rangle = 1$.

2. Construct the l-th pseudo PC orthonormal to the existing ones as linear combination of M_1, \ldots, M_l, e.g., $P_2(\tau) = p_1^{(2)} M_1(\tau) + p_2^{(2)} M_2(\tau)$ and $\langle P_1, P_2 \rangle = 0$, $\langle P_2, P_2 \rangle = 1$.

3. Any need to further adjust the pseudo PCs? Use orthonormal rotation matrices to rotate the basis set.
Figure: Example of the first three pseudo principal components of forward rates, representing the typical yield curve movements shift, steepening and curvature.
Overview

1. The dynamic term-structure model
2. Fitted curves
3. Principal components
 - Definition of principal components
 - Pseudo principal components
4. Pricing
Pricing zero bonds

Given the HJM parameterization of the forward rate curve, the price at time t of a zero bond with maturity T is

$$P(t, T) = \exp \left(-\tilde{A}(T - t) - \tilde{M}^\top (T - t)u(t) \right),$$

(9)

for $\tilde{A}(\tau) = \int_0^\tau A(s)ds$ and

$$\tilde{M}_i(\tau) = \int_0^\tau M(s)ds = \frac{1}{\alpha_i} (1 - \exp(-\alpha_i \tau)).$$
Pricing zero bond options (and thus caps/floors)

Recall $\Sigma_{t,T} \in \mathbb{R}^{n \times n}$ from (4) with

$$(\Sigma_{t,T})_{jk} = -\frac{\exp(-(\alpha_j + \alpha_k)(T - t)) - 1}{\alpha_j + \alpha_k} (\sigma\sigma^\top)_{jk}.$$

Theorem (Price of a European call option on a zero bond $P(t, S)$)

The price of the call at time t with expiry $T < S$ and strike K is

$$ZBC(t, T, S, K) = P(t, S)\Phi \left(\kappa + \frac{1}{2} \frac{C^2_{t, T, S}}{C_{t, T, S}} \right) - P(t, T)K\Phi \left(\kappa - \frac{1}{2} \frac{C^2_{t, T, S}}{C_{t, T, S}} \right),$$

where $\kappa = \ln \frac{P(t, S)}{P(t, T)K}$ and $C^2_{t, T, S} = \tilde{M}^\top (S - T)\Sigma_{t, T} \tilde{M}(S - T)$.

Proof: Using SDE of quotient process $d\frac{P(t, V)}{P(t, T)}$, and distribution of $u(T)$.
Pricing zero bond options: $G2++$ formula

For the two-factor model, [Brigo and Mercurio(2006)] compute explicitly

$$C_{t,T,S} = \frac{\sigma^2}{2\alpha_1^3} \left[1 - e^{-\alpha_1(S-T)} \right]^2 \left[1 - e^{-2\alpha_1(T-t)} \right]$$

$$+ \frac{\eta^2}{2\alpha_2^3} \left[1 - e^{-\alpha_2(S-T)} \right]^2 \left[1 - e^{-2\alpha_2(T-t)} \right]$$

$$+ 2\rho \frac{\sigma\eta}{\alpha_1\alpha_2(\alpha_1 + \alpha_2)} \left[1 - e^{-\alpha_1(S-T)} \right] \left[1 - e^{-\alpha_2(S-T)} \right] \cdot$$

$$\left[1 - e^{-(\alpha_1+\alpha_2)(T-t)} \right]$$

(σ, ρ, η have different meanings there)

Imagine the size of the formula for $n = 5$ parameters...
Conclusion

- Tractable, transparent dynamic term-structure model as sum of exponentials with arbitrary degrees of freedom ideal for risk management
- Identified principal components in parametric affine models using weighted function spaces
- Pseudo principal components
 - ...add intuitive meaning to the weights / factor loadings, and
 - ...allow for sensitivities extending well-known ones (e.g. duration); these model-based sensitivities can be useful for hedging and portfolio management.
- Pricing caps and floors with transparent matrix-based formulas
References

D. Brigo and F. Mercurio.
Interest rate models – theory and practice. With smile, inflation and credit. 2nd ed.

D. Duffie and R. Kan.
A yield-factor model of interest rates.

N. El Karoui and V. Lacoste.
Multifactor models of the term structure of interest rates.
In AFFI conference proceedings, 1995.

M. Henseler, C. Peters, and R. C. Seydel.
A tractable multi-factor dynamic term-structure model for risk management.
ssrn.com, February 2013.
Overview

5 SDE solution of u

6 Calibration

7 Volatility and correlation
For $S = \text{diag}(-\alpha)$, the stochastic dynamics of the weights in (2), started in t_0 with $u(t_0)$, specifies an Ornstein-Uhlenbeck process with the solution

$$u(T) = \exp(S(T - t_0))u(t_0) + S^{-1}(\exp(S(T - t_0)) - 1)R$$
$$+ \int_{t_0}^{T} \exp(S(T - \nu))\sigma \, dW(\nu),$$

(10)

for any time $T \geq t_0$.
Overview

5 SDE solution of u

6 Calibration

7 Volatility and correlation
Calibration: How to get the numbers

Different parameters to be chosen / estimated / calibrated:

- Model specification: $n, \alpha \in \mathbb{R}^n$
- Static curve specification: $u \in \mathbb{R}^n$
- Specification of dynamics: $R \in \mathbb{R}^n, \sigma \in \mathbb{R}^{n \times n}$

There are two alternatives: implied calibration to market data and historical calibration, each one with its (dis)advantages.
Calibration: How to get the numbers (II)

Implied calibration to market data (e.g., for G2++):

1. Determine and interpolate yield curve \sim all zero bond prices
2. Fix n, set $u = 0$, drop R. Adding time-dependent parameters ensures perfect fit of yield curve for any α, u, σ
3. Calibrate to cap volatility surface $\sim \alpha$, σ

Historical calibration (no perfect fit of yield curve!):

1. Fix n, α
2. Determine best fit of yield curve using (1) by minimizing an error function (e.g., RMSE) $\sim u^{(i)}$ for $i = 1, \ldots, N$
3. Estimate R, σ from curve time series $u^{(i)} \sim R$, σ, affine term $A(\tau)$

Problem: Interpolation has to be done beforehand; today’s model inconsistent with yesterday’s model!

Problem: Historical calibration needs $A(\tau)$ in step 2, which depends on σ. \Rightarrow Use iterative procedure!
Overview

5 SDE solution of u

6 Calibration

7 Volatility and correlation
Volatility and correlation

Figure: Estimated volatility and correlation of annualized zero rates, based on German government bonds in the time period from Jan. 2002 to Dec. 2011.